Phylogenetic constraints on elemental stoichiometry and resource allocation in heterotrophic marine bacteria.

نویسندگان

  • Amy E Zimmerman
  • Steven D Allison
  • Adam C Martiny
چکیده

The objective of this study was to evaluate the contribution of evolutionary history to variation in the biomass stoichiometry and underlying biochemical allocation patterns of heterotrophic marine bacteria. We hypothesized that phylogeny significantly constrains biochemical allocation strategy and elemental composition among taxa of heterotrophic marine bacteria. Using a 'common-garden' experimental design, we detected significant interspecific variation in stoichiometry, macromolecule allocation and growth rate among 13 strains of marine Proteobacteria. However, this variation was not well explained by 16S rRNA phylogenetic relationships or differences in growth rate. Heterotrophic bacteria likely experience C-limitation when consuming resources in Redfield proportions, which consequently decouples growth rate from allocation to rRNA and biomass P content. Accordingly, overall bacterial C : nutrient ratios (C : P = 77, C : N = 4.9) were lower than Redfield proportions, whereas the average N : P ratio of 17 was consistent with the Redfield ratio. Our results suggest that strain-level diversity is an important driver of variation in the C : N : P ratios of heterotrophic bacterial biomass and that the potential importance of non-nucleic acid pools of P warrants further investigation. Continued work clarifying the range and controls on the stoichiometry of heterotrophic marine bacteria will help improve understanding and predictions of global ocean C, N and P dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Changes Underlying Elemental Stoichiometry Shifts in a Marine Heterotrophic Bacterium

Marine bacteria drive the biogeochemical processing of oceanic dissolved organic carbon (DOC), a 750-Tg C reservoir that is a critical component of the global C cycle. Catabolism of DOC is thought to be regulated by the biomass composition of heterotrophic bacteria, as cells maintain a C:N:P ratio of ∼50:10:1 during DOC processing. Yet a complicating factor in stoichiometry-based analyses is th...

متن کامل

Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium

The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH4+ and PO43-. The unique dataset covers 415 different concentration pairs, corresponding t...

متن کامل

Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives

1. Ecological stoichiometry deals with the mass balance of multiple key elements [e.g. carbon (C), nitrogen (N), phosphorus (P)] in ecological systems. This conceptual framework, largely developed in the pelagic zone of lakes, has been successfully applied to topics ranging from population dynamics to biogeochemical cycling. More recently, an explicit stoichiometric approach has also been used ...

متن کامل

Variable Stoichiometry and Homeostatic Regulation of Bacterial Biomass Elemental Composition

Prokaryotic heterotrophs (hereafter, bacteria) represent a large proportion of global biomass, and therefore bacterial biomass stoichiometry likely exerts control on global phosphorus (P), carbon (C), and nitrogen cycling and primary productivity. In this study we grew recently isolated freshwater heterotrophic bacteria across an ecologically relevant range of resource C:P ratios (organic C to ...

متن کامل

A manuscript for Aquatic Microbial Ecology. Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growth- and resource-dependent variations

A manuscript for Aquatic Microbial Ecology. Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: implications for growthand resource-dependent variations Wataru Makino* and James B. Cotner Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108, USA *) Corresponding author. Present address: Center for E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2014